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Abstract. The longitudinal susceptibility of the Heisenbergferromagnet, with shore 
range interactions only, is known to diverge below Tc at H = 0 as l/k and at  k = 0 as 
H - l I 2 .  This divergence has never been observed in neutron scattering experiments. 
We compute the longitudinal and transverse susceptibilities including dipolar effects 
a t  low temperatures and their variation with k and H. We use linear spin-wave 
theory and find that for k2 + H < m, where m is the ratio of the dipolar strength 
to the exchange strength, the dipolar susceptibility is half that of the exchange-only 
susceptibility for both longitudinal and transvelse cases. For k2 + H > m,  the two 
susceptibilities are asymptotically identical. Thus we conclude that it is the applied 
magnetic field that destroys the divergence. Numerical results are presented for the 
susceptibilities as a function of k and H. 

1. Introduction 

The properties of the longitudinal susceptibility x f 2  of ferromagnets with Heisenberg 
short-range interactions are surprisingly still the topic of controversy because the 
experimental situation is unclear [l]. Holstein and Primakoff [2] predicted that x z z  
diverges below Tc with the applied field h like h - l j 2 .  The calculations of Mazenko 
[3] found the wavevector dependence of x z 2  to diverge like l / k  in zero field. Brezin 
and Wallace [4] studied the longitudinal susceptibility of Heisenberg ferromagnets in 
the critical regime close to Tc and showed that it diverged in the critical regime with 
vanishing k and H as well. So far neutron scattering experiments have failed to detect 
any divergence for all temperatures below T,. 

Recently the longitudinal susceptibility x z z (  k )  has been measured using neutron 
scattering on EuO by Mitchell et  a1 [5] and Ni  by Mitchell and Mook [6] which are 
cubic ferromagnets with dipolar interactions. The experiments were performed at  
close to  Tc with the scattering wavevector k 2 0 . 0 2 ~  and the expected divergence was 
not observed. However a small field was applied to  remove the domains caused by 
the dipolar interactions. According to the theories of Holstein [2] and Brezin [4], this 
applied field would be responsible for removing the divergence . 

All real Heisenberg ferromagnets have a long-range dipolar interaction between 
the spins in addition to  the short-range exchange interactions. It is, to our knowledge, 
undetermined how the dipolar forces affect the behaviour of xZz  and its divergence 
in the low-temperature and low-k limit. Aharony and Bruce [7] have performed a 
renormalisation-group calculation for Heisenberg ferromagnets with dipolar interac- 
tions close to the transition temperature Tc. They found that the critical exponents 

0953-8984/W/367511+15$03.50 @ 1990 IOP Publishing Ltd 7511 



7512 H S Toh and G A Gehring 

and scaling functions to be negligibly altered numerically when dipolar forces are in- 
cluded, and the longitudinal susceptibility still divergent in the critical regime below 
T, with vanishing k and h. 

This paper seeks to  investigate the effects of dipolar interactions in the Heisen- 
berg ferromagnets in the low-temperature regime. It seeks to determine, in the low- 
temperature regime, unambiguously the cause of the experimental failure to  see the 
divergence. Using linear spin-wave theory, we calculate the longitudinal and transverse 
susceptibilities over the whole Brillouin zone while including dipolar effects, investi- 
gating their behaviour in the limit of vanishing IC and magnetic field. Using the above 
results, we arrived at  the conclusion that it was the magnetic field and not dipolar 
interactions that destroyed the divergence. What dipolar effects induce is a halving 
of the susceptibility when ( k 2  + h)  << m, where m is the dipolar field strength. For 
( k 2  + h )  >> m, the susceptibility is almost numerically the same as in the case without 
dipolar forces. We show that for the magnetic field strengths applied and range of k 
values measured in Mitchell and co-workers’ experiments [ 5 , 6 ] ,  the divergence would 
not be observed. 

We have also computed the transverse susceptibilities x+-, x-+, x--, x++ using 
the same linear spin-wave theory, finding the transverse susceptibilities much more 
divergent in the small4 limit than the longitudinal susceptibility. To measure the 
longitudinal susceptibility experimentalists should use polarised scattering techniques 
to filter out the transverse susceptibilities. Again we found this halving effect in 
x-+, x+- due to  dipolar forces as described for the longitudinal case. Without dipolar 
forces, x-- = x++ = 0 [8]. We found that for k2 + h << m, x-- = xtt  N frx-+(non- 
dipolar) . 

In section 2,  using linear spin-wave approximations, we analyically derive the longi- 
tudinal and transverse susceptibilities of a three-dimensional Heisenberg ferromagnet 
with dipolar interactions for all values of IC and h. In section 3,  we present the ana- 
lytical results for the asymptotic behaviour of the susceptibilities for the two limiting 
cases of small and large values of k and h respectively. The numerical results for all 
IC and experimentally applied values of the field based on selected real crystals (EuO, 
Fe, Ni) are presented in section 4. In these calculations we have assumed that the 
longitudinal susceptibilities can be modelled by a Heisenberg model for the metallic 
ferromagnets Fe and Ni. Based on these numerical results, we concluded that Ni was 
likely to be the best candidate to  measure the divergence of x z z .  

2. Analytic derivation of the susceptibilities 

We investigate ~ ” ( l z ,  h )  in the low-temperature spin-wave regime as a function of the 
strength of the dipolar interactions, external field and temperature. Throughout this 
paper we consider only a simple cubic lattice. 

The Hamiltonian for a ferromagnet with nearest-neighbour exchange energy of 
strength J and magnetic moment M = gpBS in a field B applied in the z direction 
is given by 

x {3[Si * (T i  - Tj ) ] [S j  * ( T i  - T j ) ]  - IT; - T j  I2Si * Sj}. 
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B is the internal magnetic field, which takes into account the demagnetization field. 
The Hamiltonian should also include a magnetic anisotropy term, but for most high- 
symmetry cubic substances, including the ones this paper will touch on (EuO, Fe, 
Ni), its magnitude is very small compared with the exchange and dipolar energies (see 
section 4 ) .  We can represent this anisotropic term as an internal field incorporated 
into B.  

Within the low-temperature linearised approximation, Holstein [2] obtained the 
Hamiltonian 

where the operators cg and ci are given in terms of spin operators by 

sps = m ( " , c ,  + V,Ct_p) 

s, = m ( u , c ;  + VqC-,) 

( 5 a )  € P = E  -4 = [A; - IB,I I 

B, = B-, = 2SJmsin' B,e2i~ (5c )  

h = (gpBB)/(2SJ)* ( 5 4  

2 112 

A,  = A - ,  =2JS(3-cosq , -cosqy-cosqz)+2SJh+2SJmsin28,  (5b) 

'p is the azimuthal angle of q in the plane perpendicular to the z direction. 

of radians. N is the number of spins per unit volume. 
Oq is the angle q makes with the z direction. The wavevector q is given in terms 

m can be crudely thought of as the ratio of dipolar to exchange energies. 

details of the calculation are in the appendix. 
Having obtained this boson Hamiltonian, we can derive the susceptibilities. The 

The longitudinal susceptibility is 

where nq = (ep'q - l ) - l  and p = l/kBT. 
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The transverse susceptibilities are 

xt+(k, h )  = X--(k, h )  = 2SN(gPB)2w.  
' k  

By comparison, for the case of exchange interactions only, 

m = 0 V k  = Bk = 0 
Aq(m = 0) = cq(m = 0) G cq 0 

6;  = 2 J S ( 3  - cos qz - cos q, - cos q z )  + 2JSh 

n ( m  = 0) E no = (eP't - 11-1 
Q P 

- ++ 
Xnon-dipolar - Xnon-dipolar = O' 
-- 

We note that equation (7) differs from equation (9a) through the difference in the 
matrix elements as well as depending on the dipolar energies cq in place of non-dipolar 
energies E : .  

3. Asymptotic behaviour of susceptibilities 

3.1. Longitudinal susceptibil i ty 

In this section we look at  the low-lc limit of the susceptibilities analytically so as 
to  obtain physical insight into the results. xZz diverges in the limit of vanishing lc 
and h ,  because most of the contribution to the integral expression of xzz comes from 
the region of small q. The integrand in the limit of vanishing q will be much larger 
than in the outer regions of the Brillouin zone. In this section we will work on the 
assumption that the dominant divergent contribution to the integrand as k and h go 
to zero will come the infinitesimal region of vanishing q. This corresponds to small 
Pfq  (cf equation (6)). The predictions of this section will be subsequently justified by 
the numerical results of section 4. With that approximation we can expand in terms 
of Deq and the following functions can be approximated thus: 

nq - n q + k  n q t k + n q +  1 1 1 
% -- E y  

' q + k  - ' q  €q+k + ' q  P 'q+k'q ' 

Then equation (6) becomes 
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Using the relations (4) we find the following expression for the matrix element part 
of equation (9) 

and hence 

Equation (10) shows that XZ2(k,h) increases linearly with T ,  for small k. However 
it is actually a good approximation for the whole Brillouin zone as can be seen from 
figure 8. 

Using the form of A,,  cq given in equations ( 5 a ) ,  ( 5 b ) ,  it can be shown that 

1 lim Xzz(k, h)  = - 
9 

k - 0  

When the dipolar forces are absent, m = 0, and we obtain the standard result for 
the non-dipolar case which can be obtained from equation (sa) (cf [2,3]) 

h = 0 ,  k - 0  1 
k 

N -  

1 k = O ,  h 4 O .  N -  

fi 
We can write 

Xzrpolar(k, h,  = iX&-dipolar(ki h, + h)* 

When k2 + h >> m, B,, B,+, can be neglected, and 

1. 22 
2 Xnon-dipolar. 

In this regime, 

22 - z z  
Xdipolar - Xnon-dipolar 

as expected. 
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We now examine the case where k’ + h << m. X:in-dipolar diverges for small h ,  k. 
Setting k = h = 0, it can be shown that 

) + constant = - Jq’dq (w 1 

is finite-in other words, I o ( k ,  h )  is non-divergent in this limit of vanishing k, h.  
Io can then be neglected, and 

1% 1 %’ 
Xdipolar = ZXnon-dipolar 

in the dipolar limit k2 + h << m. The dipolar susceptibility in this limit is essen- 
tially the non-dipolar susceptibility, except that its magnitude is halved. The dipolar 
susceptibility is thus isotropic like the non-dipolar case, even though dipolar forces 
are anisotropic. All the angular directional dependence of k is contained in the non- 
divergent term Io(k ,  h ) ,  so the asymptotic behaviour of x’’ for k’ + h << m is inde- 
pendent of direction. For k 2  + h >> m, x’’ - X:in-dipolar, which is isotropic. Thus, 
over the whole Brillouin zone, x”” is almost independent of the direction of k. This 
is confirmed by our numerical calculations. 

We can also explain this ‘splitting off’ of the dipolar susceptibility into an isotropic 
divergent part and an anisotropic non-divergent part in terms of the transverse sus- 
ceptibilities in section 3.3. 

3.2. Transverse susceptibilities 

We now examine the behaviour of the transverse susceptibilities. It can be shown 
using equations (4)’ (5) and (7) that 

Using explicit forms of A, ,  B,, E ,  and m, 

Note the explicit dependence of the transverse susceptibilities on the direction of 
k, introduced by dipolar forces, whereas the longitudinal susceptibility is essentially 
isotropic. 

In the dipolar limit k’ + h << 2m, this angular dependence causes the transverse 
susceptibilities to  behave differently in the region of small 0, and large 0,. 
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For large values of 8, such that  k2 + h << 2m sin2 O,, 

For small values of 8, such that  k2 + h >> 2m sin2 8, and for all values of 0 when 
k2 + h >> 2m, 

m 1  
4 s  k2 + h 

y - + ( k , h )  = X + - ( k , h )  = -- 

which is the non-dipolar result. 
We see a halving effect in x-+ similiar to  xxz brought about by dipolar forces. 

Dipolar forces cause x-- t o  diverge rapidly for k2 + h << 2msin2 0,; without dipolar 
forces x-- = x++ = 0 throughout the whole Brillouin zone. For dipolar ferromag- 
nets, as k and h go to  zero, all transverse susceptibilities diverge much more strongly 
than the longitudinal susceptibility, approximately like the square of the longitudinal 
susceptibility. 

Note that  within the approximations of linear spin-wave theory, which is restricted 
to  low temperatures, the transverse susceptibilities are independent of temperature. 

9.3. Longitudinal susceptibility revisited 

We can relate the asymptotic behaviour of the longitudinal susceptibility to  that  of 
the transverse susceptibilities. In the integral expression for x'" (equation (B)) ,  the 
dominant contribution to  the integrand comes from the limit of vanishing q .  This is 
true for all values of li and h,. Thus we can apply the approximate expression for ;yzz 
for all values of k and h from equation (10). 

Using the expression for the transverse susceptibilities from equation (15): 

x""(k,  h) M k,T 

We define 

and 

m 1 
4 7 k 2 +  h + 2 m s i n 2 0 , '  

U ( 0 , )  G - 

Using equation ( l a ) ,  we can then write 

Note that  U(O,)U(8,,,) is nothing more than l o ( k ,  h )  (cf equation (11)). 
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4. Numerical results 

We have numerically integrated equations (7), (8) over the whole Brillouin zone to 
demonstrate the asymptotic behaviour predicted in section 3. We determine 2 S J  in 
terms of Tc, using the approximate mean-field relation: 

3kBTc 
t ( S +  1) 

2 S J  = 

where z is the number of nearest neighbours. 
We have plotted the susceptibilities of the real compounds, EuO, Fe and N i ,  in the 

hope that experimentalists will compare with our numbers. EuO is a ferromagnetic 
insulator and is well described by the Hamiltonian in equation (1). Fe, Ni are both 
conducting metals and itinerant magnets. We use the model of a Heisenberg ferro- 
magnet described in equation (1) as an approximate description of them, because we 
know that low-frequency spin-wave modes are observed in the metals. The data used 
to represent the magnets EuO, Fe and Ni  are given in table 1. 

Table 1. Data used to represent the magnets EuO, Fe and Ni. 

Fe Ni EuO 

kD = 0.13 kD = 0.045 kD = 0.38 
Tc = 1040 K Tc = 69 K 
S = l  s =  112 S = 712 
r = 8  2 = 12 z = 6  
N = 8.5 x lozz cm-3 

Notation. Following Mezei [9], we have defined the dipolar wavevector kD = 6 = 
m g p ~ .  One can think of kD as the magnitude of the wavevector at which the 
crossover between the dipolar and non-dipolar regimes occur. 

Tc = 631 K 

N = 9.2 x IOz* cm-3 N = 2 x loz2 cm-3 

We define W to  be the anisotropy energy. The ratio of the anisotropy to exchange 
energies is 

W 0(10-3) for Fe (cf [lo]) 
7 = { 0(10-4) for Ni (cf [ll]) 

m is roughly the ratio of dipolar to exchange energies. Comparing W / J  to 

0.017 for Fe 
0.002 for Ni  

m = {  

we can see that the anisotropy energy is negligible not only to the exchange but the 
dipolar energy as well. 

Numerical results are computed for the following quantities. 
A. Longitudinal susceptibility as a function of magnetic field of the following crys- 

tals compared with the non-dipolar longitudinal susceptibility without a field: EuO, 
Fe, Ni, at  T = iTc.  

B. Transverse susceptibilities xtt ,  xt- in the absence of a field for the following 
crystals compared with the non-dipolar transverse susceptibility x+- : EuO, Fe, Ni. 
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11001 2 1 0 5  1 0  1 5  2 0  2 5  3 0  

4o = 0 38 Wavevector (radians1 

Figure 1. k g T x Z Z  of EuO along the transverse 
direction (MO) and the z direction (OOk). T = 
Tc/2 and h = 0. This graph demonstrates that 
x Z 2  is almost independent of the direction of k 
throughout the Brillouin zone. 

10 t 

I 
h = 0 1LL 

I I I I I 

0 5  1 0  1 5  2 0  2 5  3 0  

4" = 0 38 W a v e v e c t o r  (radians1 

Figure 2. kgTxZ2 of EuO as a function of k 
at T = Tc/2 ,  with h = 0, h = 0.02, h = m. 

son. S = 712 for all susceptibilities. 
x ~ ~ ~ - ~ ~ ~ ~ , ~ ~  22 

of EuO is also plotted for compari- 

EuO is a simple cubic crystal, and Fe and Ni have bcc and fcc symmetry re- 
spectively. In our numerical integration programme we have assumed a simple cubic 
Brillouin zone of edge 2n, and wavevectors q,  IC are in units of radians. Our asymptotic 
analysis of section 3 has shown x t t  to  be almost independent of the direction of k, as 
numerically demonstrated by figure 1. Therefore, in all other figures showing x ' ,  we 
have taken k to  be along the z direction ([OOl]). 

As shown in section 3, the transverse susceptibilities are highly dependent on the 
direction of k. If Ok = 0,  i.e. k = ( O , O , k ) ,  the transverse susceptibilities will be those 
for the non-dipolar case and there will be no dipolar crossover effects. In our figures, 
we have chosen k = (IC, O , O ) ,  i.e. sin' Ok = 1 and the dipolar crossover behaviour of 
x++ = x-- is highly visible. By symmetry, ( I C ,  0,O) and (0, I C ,  0) are equivalent as far 
as the transverse susceptibilities are concerned. 

The  values of the dipolar strength m are taken from [5 ,6 ,9] .  Mitchell and co- 
workers [5,6] applied an ez t e rna l  magnetic field of 0.1 T to EuO and 0.8 T to Ni.  
The internal field seen by the magnetic spins will be smaller than these external field 
strengths due to  demagnetization effects; nevertheless, we have chosen to  plot for 
these values of the applied field. Using the formula h = ( z ( S +  1)gpBB)/(31CBT,,), this 
translates to  h = 0.02 for EuO and h = 0.1 for Ni.  We have also plotted the case 
of h = m for Fe and EuO with the crudely approximate assumption that  that  is the 
applied field stength required t o  remove domains created by dipolar interactions. The 
data  in the following figures were obtained by numerical integration of equations (7) 
and (8). Mitchell and co-workers [5,6] performed experimental measurements close to  
T,, at about 0.9Tc. In this regime the assumptions used in the low-temperature linear 
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10' 

spin-wave theory in this paper would break down; nonlinear interacting terms become 
important, rendering the calculation extremely difficult. At temperatures much closer 
to  T,, e.g. in the range 0.99Tc - Tc, the renormalisation-group methods of Aharony 
and Bruce [7] would be appropriate. To preserve the validity of our calculations, we 
have chosen t o  compute our numerical results for eratures no higher than Tc/2. 

- 

h i 0 017 

I 0 5  1 0  1 5  2 0  2 5  3 c  

qo I 0 13 Wavevec tar  iradiansl 

: I  c l o - '  

c 
[k X J '  nondipalar 

h i 0 002 
10 ' 

, 
t 0 5  1 0  1 5  2 0  2 5  3 0  

Wavevector (radians1 qD . O O L 5  

Figure 3. k B T X Z Z  of Fe as a function of k at 
T = Tc/2 with h = 0, h = m. x ~ & , ~ ~ ~ ~ ~ ~ ~  of 
Fe is also plotted for comparison. S = 1 for all 
susceptibilities. 

Figure 4. k B T X Z z  of Ni as a function of k 
at T = Tc/2  with h = 0, h = 0.1, h = m. 
x & ~ ~ ~ ~ ~ ~ ~  of Ni is also plotted for comparison. 
S = 1/2  for all susceptibilities. 

Because IC,, is so small for all three magnets, the figures for xzZ  do not demon- 
strate the crossover to  the dipolar regime very well. To demonstrate the predicted 
halving effect due to  dipolar effects clearly, table 2 shows the numerical data for the 
longitudinal susceptibility of EuO. 

The  susceptibilities are in units of (gpB)2 x loz4 ~ m - ~ .  h = 0,  T = Tc/2. Observe 
that for k, < kD, xZz  is about half x~~n-dipolar .  For k, >> kD, the two susceptibilities 
are roughly equal. The  numerical data  indicate that  a divergence will be detected at  
k, 5 0.1. However, we must remember that in this case h = 0, and that even a small 
value of h will reduce the divergence at  small k,, as the figures indicate. 

From the figures we can see that in order to  detect any of the predicted divergence 
even in the absence of a field, measurements must be taken with the magnitude of the 
scattering wavevector IC smaller than 0.01 rad. For IC larger than 0.01 the longitudinal 
susceptibility is relatively flat. The experiments performed by Cowley and Mitchell [l] 
and Mitchell and co-workers [S, 61 measured a t  wavevectors no smaller than 0.01 rad. 
Experiments measuring x z z  must be done on single-domain crystals. Dipolar forces 
cause multiple domains to form, and a magnetic field needs to be applied to  remove 
domains. The  figures show that  even a small magnetic field will reduce the divergence 
by several orders of magnitude. The larger the dipolar strength m, the stronger the 
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Table 2. Numerical data for the longitudinal susceptibility of EuO. 

7521 

0.001 13.0 
0.01 1.31 
0.1 0.13 
0.2 0.067 
0.3 0.045 
0.4 NN kD 0.034 
0.5 0.028 
0.6 0.0236 
0.8 0.018 
1 .o 0.015 
2.0 0.010 
3.0 0.0125 

6.48 
0.635 
0.064 
0.035 
0.026 
0.021 
0.018 
0.016 
0.013 
0.011 
0.0085 
0.011 

100 

10.' 

100 

l o - '  

1 0 5  1 0  1 5  2 0  2 5  3 0  

, I I 1 

0 5  1 0  1 5  2 0  2 5  3 0  

qD i 0 38 W a v e v e c t o r  (radians1 an = 0 13 W a v e v e c t o r  l iadiansl 

Figure 5 .  Transverse susceptibilities of EuO. Figure 6.  k B T  x transverse susceptibilities of 
k B T X S t  = k g T X - - ,  k g T X - $  = k B T x t -  are 
plotted. The sharp decay of  x--  after kD most 
visibly demonstrates the dipolar crossover effect. 

ted for comparison. h = 0 and h is along the z 
direction. By symmetry, h along the y direction 
would have produced the same result. T = Tc/2. 

Fe. h = 0 ,  T = Tc/2. 

ICBTX;2 .d ipolar  = k B T X ~ ~ - d i p o l a r  is Plotr 

magnetic field h is required. It appears that  Ni, based on the approximate model of 
a Heisenberg ferromagnet in equation ( l ) ,  with the smallest dipolar strength m, is 
the best candidate t o  experimentally detect divergent behaviour. The temperature in 
relation t o  the Curie temperature T,, will affect the longitudinal susceptibility x z z ;  
this can be deduced by comparing the figures of x z z  a t  T = T,/2 with those a t  
T = Tc/4. x z z  varies with T in a quasilinear way. The  lower the temperature, the 
smaller the value of x*". Within the framework of low-temperature spin-wave theory, 
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we found the transverse susceptibilities independent of temperature. The transverse 
susceptibilities show the most obvious indication of a crossover from the dipolar to  
non-dipolar behaviour, particularly the rapid decay of x + + ( =  x - - )  after the dipolar 
wavevector k,. 

10 ’ 
% * 

1 1 0 ’  

2 
+ 

10’ 
x 

10’ 

10 -’ - 
I I I 

t 0 5  1 0  1 5  2 0  2 5  3 0  

- 
I I I 

t 0 5  1 0  1 5  2 0  2 5  3 0  

Wavevector  l radiansi 4, = 0 0 4 5  

- 
T = T c / L  E 

I I , I I 1 
0 5  1 0  1 5  2 0  2 5  3 0  

4, = 0 38  Wavevector !radlansi 

Figure 7. l c ~ T  x transverse susceptibilities of Figure 8. Longitudinal susceptibility xzz of 
Ni. h = 0 ,  T = Tc/2.  EuO for T = Tc/2 and T = Tc/4. h = 0. This 

is to demonstrate the temperature dependence of 
x z z .  We can generalise this temperature depen- 
dence to all cases of longitudinal susceptibility 
with various values of h and m, of various real 
substances. 

The  transverse susceptibility x - +  appears about an order of magnitude larger than 
the longitudinal. This is partly due to  the much faster divergence of the transverse 
susceptibilities in the low-H region. 

Neutron scattering experiments do not measure x directly, but the scattering cross 
section d2aldS2dE which is proportional to k,TX. Thus we choose to  plot k,TX 
instead of x for all diagrams except figure 8. k,Tx is temperature dependent in both 
the longitudinal and transverse cases, whereas x is temperature dependent only in the 
longitudinal case. Since the purpose of figure 8 is to demonstrate the temperature 
dependence of the longitudinal susceptibility x z z ,  x z z  instead of kBTxzZ is plotted for 
figure 8. 

5. Conclusion 

Holstein and Primakoff [2] showed that in the low-temperature regime, for zero H ,  
the longitudinal susceptibility diverged as h-’I2.  Mazenko [3] found the longitudinal 
susceptibility to  diverge in zero magnetic field as l/H. To our knowledge so far no 
experiment has confirmed the above predictions. Neither results took dipolar effects 
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into account. We have included the effects of dipolar interactions and shown that  the 
power law nature of the divergences of the longitudinal susceptibility with k and h is 
unchanged. What  the dipolar interactions effect is a halving of the magnitude of the 
longitudinal susceptibility for (k2 + h )  << m. The factor that  destroys the divergence 
of the longitudinal susceptibility is the applied magnetic field, as originally predicted 
by Holstein. Even in the absence of a field, our figures indicate that experiments need 
t o  be conducted at L < 0.01 t o  detect this divergence. Numerical curves have been 
obtained for the various susceptibilities as a function of magnetic field strength h over 
the whole Brillouin zone. Our numerical results indicate that Ni,  with the smallest 
dipolar strength m and hence requiring a smaller magnetic field to  remove domains 
created by dipolar interaction, would be the best candidate t o  detect any divergence. 

We have also analytically calculated the behaviour of the transverse susceptibil- 
ities including dipolar effects and found that ,  as for the longitudinal case, dipolar 
effects halve the susceptibilies for ( k 2  + h )  << 2msin2 dk. Unlike the longitudinal case, 
the transverse susceptibilities with dipolar interactions are highly dependent on the 
direction of the scattering wavevector. The other important difference is that  the 
transverse susceptibilities are independent of temperature within the framework of 
our analytical approximations. We show that  the halving effect of the longitudinal 
susceptibility can be related to  the halving effect of the transverse susceptibilities. 
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A p p e n d i x .  Long i tud ina l  suscept ibi l i ty  

We apply a small spatially sinusoidal field in the t direction: 

At low temperatures, the system is near saturation, so we can approximate 
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We used the expressions for S- , S+ from section 2 to obtain the expression for Sz  

To 3iHp we add 
in terms of the bosonic operators c, ct .  

The new Hamiltonian is 

Xz is then expressed in terms of c , c ~ .  
The equations of motions are 

d 
dt ih-cq(t) = [cq,'Hz]. 

Since h' is small, the equations of motion are linearised to first order in h', from which 
the linearised solutions are obtained: 

and similiarly for c,(t) 
To first order, 

We express Sz(k,t) in terms of Ck(t),cL(t), which in turn can be expressed in terms 
of ck, c i ,  then take thermal averages and apply the thermal relations. 
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All time-dependent terms cancel out. Thus, we obtain 

Note a d d e d  in proof .  We have just uncovered a paper (Pokrovsky V L 1979 Adv. Phys. 28) in which 
the author predicted analytically the halving effect in the susceptibilities due to dipolar interactions. 
He also addressed the question as to why the h-'12 divergence had not been seen by experimentalists 
so far; like us, he stated that in principle the divergence could be seen, but there are all sorts of 
technical difficulties involved in the experimental measurements. 
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